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1. Introduction

The primary purposes of any data assimilation system are: 1 - to
extract the signal from noisy observations - filtering; 2 - to
interpolate in space and time to obtain estimated values of state
variables at each analysis gridpoint at each time step -
interpolation; and 3 - to reconstruct state variables that are
missing in the observational data - completeness. Due to its
inherent filtering properties, it is possible to regard any data
assimilation system as an elaborate filter. For certain special
situations, it is possible to eliminate the issues  of
completeness and interpolation, and examine the’fiitering
properties (i.e. spectral characteristics) of the assimilation

scheme in isolation.

The theory is first developed for a very simple model. The model
chosen is the one dimensional linear advective-diffusive equation
on a regular analysié/forecast grid. The observation network
is specified to coincide with the analysis grid,

permitting the complete diagonalization of the second moment error

statistics of the Kalman filter system. It is then possible to
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obtain the complete covariance structure at any time from

knowledge of the observation and model error covariances and the
initial forecast errbr covariances. The stationary solutions,

convergence rates and asymptotic solutions can be found. The

not strictly positive—definite and multivariate‘céses can also be

considered.

The procedure is then applied to the linearized shallow water
equations on an equatorial beta plane. The system or model error
is constructed from the slow eigenmodes of the model and is based
on an expansion in parabolic cylinder functions. The slow (low
frequency) and fast (high frequency) error statistics are examined

separately for both the optimal and sub-optimal cases.

2. Theory and results for a one dimensional model.

The basic theofy folldws Déley and Ménardt(19935. The standard
Kalman filtér equatioﬁsiéfe derived in'Daley (1992) . The

evolufioh equations of the forecast and anélysis’ error
covariance and the equation for an optimal gain matrix are given

by equations (2.3, 2.8 and 2.7) of Daley (1992), vizg,

£ o a T ' . : .
Pn+1 - Mnl:‘nMn + Qn ! (1)
a e £ ) .
Pn = [I Kan] Pn ' (2)
S = £..T £..T -1 : : .
Kn = Pan [HnPan + Rn] ’ (3)
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where M_ is the (linear) assimilation model at time t and Hnis
the (linear) forward interpolation operator from the analysis grid
to the observation network. Pi and P: are the forecast and
analysis error covariances which are to be determined, R is the
observation error covariance and Qn is the model error covariance
between tn and tn+1 which must be specified. We have assumed
that Qn, Rn, Mn and Hn have been specified correctly and thus Kn,

the gain (or weight) matrix, is optimal.

The filtering properties of the Kalman filter system can
be investigated by application of the error covariance evolution
equations (1-2) and the optimal gain calculation (3) to an
observation network which coincides with the analysis grid. When
the variable that is forecast is the same variable that is
observed then the forward interpolation matrix Hn bécomes the
identity matrix. We also assume that the a priori statistics Q
and R are stationary and that the model M is time independent.
This permité the Kalman filter statistics to become stationary.

Under these assumptions, equations (1-3) become,

PP = MP°M + Q , : (4)

n+l
a.-1 f£f.-1 -1

(p1 = [P] + R , (5)

upon substitution of (3) into (2).
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Define the model to be the one dimension advective/diffusive

equation,

ah ah 8°h  _
5t Y Vo - V72 = 0, (6)

where U is a constant advection velocity, v is a dissipation
coefficient and h is (say) the geopotential height. Equation
- (6) is applied over the one dimensional peribdic domain

~-ma = X = ma, and h(-ma,t) = h(ma,t). The model and analysis

gridpoints and the observation network are defined as x, = -ma

+ (J-1)Ax , 1 = j = J, where J is the number of gridpoints and

Ax = 2ma/J . All matrices in (4-5) are J x J matrices.

Assume the model and observation error covariances are
homogeneous. Then it can be shown (following Daley and Ménard,

1993), that for the model (6) on this network that equations
(4-5) can be diagonalized. Then if Pg is homogeneous, we can

write for each wavenumber p, 1 = p = (J-1)/2,

*.@ = n'(paip) +d(p , (7)
r® (p) £ (p)
> = S — + —1 ,or a'p) = ——— >, (8
a_(p) f_(p) r (p) r(p) + £ (p)

, 2 2 2 2 2 2 2
with m(p) = exp(-2vAtp'/a”) . Here r"(p), a9 (p), £ (p), a (p)
are the spectral variances for wavenumber p in the observation,
model, forecast and analysis errors. Substitution of (8) into

(7) yields a Ricatti equation,
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n® (p)r? (p) £ (p)

2
2 n
2
° (p)

n+1

(p) = + g’ (p) .- (9)

r?(p) + £

In equations (7-9), each wavenumber is decoupled and there is
no propagation of covariances. In particular, equations (7-
9) are independent of U. Propagation of the covariances would
occur if either R or Q were not homogeneous, or if the
observation network did not coincide with the analysis grid,

or if the model had variable coefficients.
Stationary solutions

Suppose now that equations (7-9) are integrated from some
initial choice fi(p). (As noted above, we presume that the

v r s s f .
initial forecast error covariance P, 1s homogeneous) . For the

moment, assume that we are concerned with a fixed wavenumber

p and re-write (9) as,
£ = G(fi) . with G(£2) = wirif?/(r*+£%) + o , (10)
and references to p have been dropped. Equation (10) can be

studied using the theory of iterated maps. This equation has

two stationary solutions or fixed points,

ff= a -1+ dB , | ‘ | (11)
£ = a -1 - g , (12)
where a = 0.5(q2 + rz(m2 + 1)) and B = o - n’r'. We assume

that R and Q are positive definite and thus, r® and q2 are
positive for all p. Since P’ is also a covariance matrix, f°

shouldAalso be positive. Thus, the positive root (11) is the
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physical solution, while (12) is non-physical.

Stability properties

Denote a stationary solution of equation (10) as f°. Then, f-

will be stable/unstable to small perturbations if |dG/dle is
less than/greater than one. The stability analysis shows that
the physical solution (11) is always stable, while the unstable

solution (12) is always unstable (assuming qz, r’ > 0).

Figure 1 is a map of the inviscid case (nﬁ = 1) with q2 and r°
both specified to be equél to 2. The abscissa is G(f°) and the
ordinate is f° with‘—15 = £ = 15. The curved solid line is
G(fz) and the singularity in (12) at f° = -2 is obvious. The

two fixed points occur at the intersection of G(fz) and

the dashed straight 1line.

An interesting limit occurs when B - 0; the two stationary
solutions (11-12) coalesce and the fixed points U and S in
Figure 1 merge. In this case,the fixed point becomes neutral.

This can occur for the inviscid , perfect case (m2 = 1,

g® - 0) or for the case (r’ -» 0, g°> 0).

Also shown on Figure 1 are two trajectories. They are
calculated from the time dependent solutions,

[f§ - E21(E%(c) - 1) -2/Bc ] - 2/B £
£ = T . (13)
(£, - £.1(c, - 11 - 2/8
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Fig. 1 Map of the inviscid case (m® = 1) with g and r*
both specified to be equal to 2. The abscissa is
G(f) and the ordinate is f* with -16 < < 15
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Fig. 3 a) graph of _;‘;2 (p) for v=10,3x 10° and 3 x 10°

m?s™, b) graph of c,(p) for v =0, 3 x 10° and 3 x
10° m?s™
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Fig.2 a)g raph of g*(p) and r’(p) as a function of

wavenumber p, b) graph of ]-",,Z(P), Ef(p) and
c,(p) as a function of wavenumber p

1 ] I |

1 5 10 2030
WAVENUMBER (p)

Fig. 4 Graph of 4, __ff, ¢, as a function of wavenumber
p for & = 2500 km g = 9.8 ms?, f = 107",

E f = Eh' = 10m and the wind observation enor Evr
= 2ms™
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where c, = (a0 - IE)/(a + IE). 0 = c, < 1 is the convergence rate
toward stationarity - larger values indicating rapid convergence
and small values indicating slow convergence. When c, =1, (13)

is undefined. A form derivable by L’Hépital’s Rule is,

o [fi - a +r2)r’+ (n+ (e -1r’)] +a[a-r] (1)

2
n[f0 - o + rz} + o

Two trajectories (calculated from 13 with m° =1, q2 =r® = 2)

are plotted on Figure 1 as a series of perpendicular lines

marked with arrows. Each timestep consists of one horizontal and
one vertical segment. Trajectory 1 commences with 0 < fs < ff and

converges to the fixed point ff. The other trajectory (2) starts
with a non-physical value fs < 0. However, we note that trajectory

2 also converges to ff , but it crosses the singularity twice. All
trajectories are attracted towards the stable fixed point except

those beginning at the unstable fixed point, or for which fi = =2

for some n. However, if fi > 0, for some time tn, then £2 will

remain greater than zero for all later time. Thus, the long

term behaviour of the filter does not lead to negative variances.
Error spectra

We discuss results for the case a = 2500 km, which means that the
total channel length 2mwa ~ 15,700 km. The number of gridpoints

J = 49, corresponding to a gridlength Ax = 320 km. Because
of the homogeneity assumption, the results are independent of UAt

but vAt/a2 will be specified subsequently. In this section we
will only consider height observations (the univariate case). We
assume that the model qf(p) and observation rz(p) error spectra
have the functional form,
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(1 + pzzzj)‘2 and (1 + pL)" | (15)
respectively.'Here % and Q are specified length scales for the
model and observation error. The model and observation error

variances are denoted (Epzand (E;)2 respectively.

Inviscid case

We first consider the inviscid case, v =0 or m°(p) = 1, for all

p- In Figure 2a, we illustrate qz(p) and rz(p) as a function

of wavenumber p. In this case, E: = E; = 10 m,A% = af6 = 417 km

and Q = 0. Thus, the observation error spectrum is white,

consistent with spatially uncorrelated observation error. The

ordinate is logarithmic and has been defined such that q2(0) = 1.
r

Since E: = E, the sum (over p) of the variances is the same for

the model and observation errors.

In Figure 2b, in the same format, are shown corresponding curves

for ff(p) and Ef(p) as obtained from (11 and 8). We note

from (13 and 10), that in the inviscid case, as rz(p) - 0, then

2(p) » o(p) and a’(p) - r’(p). At the other limit, as g’(p) -

0, equations (9, 10 and 13) show that Ef(p) = ff(p) - quz(p)rz(p)

Also plotted in Figure 2b is c,(p) for this case. It can

be seen that when mz(p) =1, as rz(p) - 0, then

c+(p) - 0. Conversely,, when qz(p) - 0, then c+(p) - 1. This»
behaviour is evident in Figure 2b. Convergence is very slow for
an inviscid, perfect model.
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The rate of convergence to the stationary solution can be

considered further by examination of equations (15-16). For c, <

1, (equation 15), the distance from the fixed point (for n
large), 1is proportional to cf . On the other hand, for the
inviscid, perfect model c, =1 and equation (16) becomes,

2 _ 2.2 2 2

£2 = f£x°/(nf. + 1) , (16)
which means f: - rz/n as n 5> o . This implies a very small

change in forecast error variance between data insertions at big
n. The behaviour at small n may differ, however. If fi >> r2,

then (16) implies £2 =~ r2, which means a large initial reduction
1 g

in error, followed by r2/n behaviour as n increases. However, if
fi << r?, then ff ~ fi and there is relatively little change in

forecast error for small n.

Figure 2 indicates that for univariate height data assimilation
with an inviscid model, uncorrelated observation error and a

red model error spectrum; forecast and analysis error spectra

are much whiter than the model error. Moreover, at smaller
scales, convergence to the stationary state is rather slow,
which means that these scales tend to "remember" the initial
condition fs(p) much longer. If E: is fixed under these
conditions, the asymptotic limits (discussed above) suggest that
decreasing E; will tend to redden the forecast error spectrunm,
while increasing E: would whiten it. It can also be seen that
as the resolution of the model increases (i.e. small Ax), there
would be smaller and smaller scales in the problem and

convergence in these scales would be even slower.
Effect of dissipation

Now consider the effect of dissipation (for the univariate case).
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We again choose Q = 0 (spatially uncorrelated observation
error) and specify three values for the dissipation parameter,
VAt/a2 = 0, 0.001 and 0.01. If At = 6 hours and a = 2500 km,

then these values correspond to v = 0 , 3%10° and 3x10° m°s™’.

In Figure 3a, we plot ff(p) for these choices of v as a function
of p. It is clear that the addition of dissipation reddens the
forecast error spectrum. When,nﬁ(p) <1, equation (11 and 8)
show that as rz(p)a 0, then ff(p) - qz(p) and éf(p)‘e rz(p) as in
the inviscid case. However, when qz(p) - 0, then ff(p) = Ef(p) -
qz(p)[l - m.?‘(p)]'l° | It is cléarly evident from Figure 3a, that

as p gets large, nﬁ(p) - 0 and ff(p) > qz(p).

In Figure 3b is plotted c, (p) for the éame choices of v. It

is clearly evident from Figure 3b that positive v speeds ﬁp
convergence in the shorter waves. From (13) it can be seen that
as rz(p) -~ 0, then c (p) - 0 as in the inviscid case. Howéver,
as qz(p) - 0, c+(p) - nF(p). For a perfect, viscous model,
the stronger the dissipation, the more rapdily will the system

converge towards its fixed point.

The multivariate case

In the derivation of equations (7-8), it was assumed that
the observed and forecast variables were both h. If h is the
height field, then this derivation can be generalized to include

wind observations as well. Suppose that at every observation
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station/analysis gridpoint j, 1 = j = J we observe the
geostrophic wind v as well as the height field. We define the

geostrophic wind as,

v = 99eb (17)

f ox
where g 1s the gravitational constant and f 1is the (constant)

Coriolis parameter. (not to be confused with the forecast error
variance). on this grid, we can use Fourier decomposition to
write equation (17) in matrix form, v = Dh, where h is

a vector of heights and v is a column vector of length J of
geostrophic winds at the gridpoints and the matrix D is the

the discrete derivative operator coresponding to (17).

Equation (4) is the same in the multivariate case, but (5) is,
[Pi]_l = [1{]]‘1 + R: + DTR;lD , (18)

where R and R are observation error covariance matrices

for the height and (geostrophic) wind respectively. Assuming

that R_h and RV are homogeneous, equations (5 and 18) can be

diagonalized as in section 2 to produce for each wavenumber p,

equation (7) and a generalized version of (11), viz,

2 2
1 - ; * -21 * ~2p2g2 ! (19)
a_(p) £ (p) r. (p) ta'r (p)

where ri(p) and ri(p) are the spectral variances for

wavenumber p in the height and wind observation errors.
We now consider experiments of the same type discussed previously

for the multivariate system. We assume that the height and wind

observation errors are not spatially (or mutually) correlated
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(i.e. ri(p) and ri(p) are independent of p). We will also assume
that the model is inviscid (mz(p) = 1) and that qz(p) is given by
equation (15), with % = a/6 as before. We specify a = 2500 km, g

=9.8ms?, fF=10"s", E2 = E = 10 m and the wind observation

-1
error E = 2 ms .
v

This case is plotted in Figure 4, in the same format as Figures 2
and 3. We plot the spectra of r° ,ff and c, as a function of

wavenumber p. At p = 0, rz(p) is the same as in Figure 2a, but
as p increases, the wind information reduces rz(p)‘with respect
to the univariate case. Consequently, ff(p) is the same in the
univariate and multivariate cases at p = 0, but decreases more
rapidly in the multivariate case as p increases. c_ (p) is smaller
at high wavenumber in Figure 4 than in Figure 2b, indicating that
the addition of wind information speeds up the convergence to the
stationary state. Examination of equation (19) shows that as p -
0, r*(p) » r’(p) and as p > w , r'(p) - Ear(p)/ gP,

which is consistent with Figure 4.

It might be noted that if there are no height observations (ri-a
), then r’(0) , £(0) and a®(0) all become singular in both the
viscous and inviscid cases. This is because wind observations
alone, do not provide any information about wavenumber zero, and
therefore the forecast and analysis errors will increase without

bound.

The problem of negative variances
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We have assumed that qz(p) and r2(p) are positive for all p, which
presumes that R and Q are derived from an underlying stochastic
system (i.e. these matrices are positive definite) However,
qa(p) and rz(p), while positive, are often small. Thus, in
numerical practice, there exists the possibility that Q and/or R
may have small,negative eigenvalues. Under these conditions, it is
possible that the matrix HnPiHrT‘ + R of equation (3) might not be
strictly positive definite (i.e. have one or more very small or
negative eigenvalues) causing problems with the analysis equation.
It is well known that this can also cause problems in statistical

interpolation practice.

We will examine the effect of small,negative eigenvalues on

the performance of the Kalman filter using the spectral

equations derived earlier. Suppose that qz(p) and/or rz(p)
is less than zero for some p. In that case, there exists
the possibility that the expression under the square root
root sign in (11) is less than or equal to zero aﬁd there is

no stationary solution. This can be examined by finding the

roots of (q2 + (m?—l)raﬁ+ 4rzq2. The roots of this expression

respond to the straight lines,
2
q = -r2[|m| + 1] . (20)
on the qz/r2 plane. Along these lines, the two stationary

solutions coalesce into a single neutral solution.

In Figure 5, we use (20) to show the regiéns where there is no
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Fig. 6 Map of G(®) for the inviscid case (m® = 1) with I = 2 and g° = -4 in the same format as Fig. 1.
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stationary solution as a function of q2 (abscissa) and r°

(ordinate). r’ and q2 both run from -2 to 10 in arbitrary units.
In the case m° = 1 (inviscid), the two roots are q2 = 0 and q2 =
-4r®. In this case, the area where there is no stationary

solution includes the areas shown in gray and black. It can be
seen that while small negative values of rz;do not prevent
convergence to a stationary solution; there‘iSQgenerally no
stationary solution for small negative ValueSfbf qz. When m° = 1,
q > 0 and -q2[|m|+1]~2 = -g°/4 < r° < 0, then'both stationary
solutions (11-12) yield positive values of f?“and are thus

physically realizable. Only (11) is stable,‘however.

'In the case m° = 1/2, the region of ho’stétionary solution is

shown in black, and is clearly smaller than the corresponding

region‘for'the inviscid case. Viscosity’aids the convergence

to a stationary state for small negative values of q2.

When the observation error is spatially uncorrelated (rz(p)

independent of p) and the model error spectrum is red (as in

Figure 2), there exists the possibility that qz(p) may be

negative at large p. The addition of a small amount of viscosity

to the model appears to assist the convergence. It should be
2

noted, however, that when r* > 0 and --rz[]m[—l]2 = gq° = 0, both

(11-12) yield non-positive values, and are non-physical.

We have not attempted a detailed analysis for the situation g < 0O

(no fixed points). However, we will discuss a few special cases.
Consider first, the inviscid case (m2 = 1) with r’ = 2 and q2 =

-4. In Figure 6, we show the map G(fz) for this case in the
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same format as Figure 1. The singularity at £2 = -2 is evident,
but this time there are no intersections with the dashed line
and, hence, no fixed points. We can examine this case using

(12). Define, ¢ = tan'[ /-B/a]. Then (16) is written as,

A cos(ng) + Blsin(n¢)
f = 7 (21)
Azcos(n¢) + stin(n¢)

where Ai' B1 ’ A2 and B2 are constants. If,

¢ =tan [ /B /a] = Lm/t (22)

where ¢ , ¢ are integers with ¢ = 2|%| = 0, then equation (21)
is periodic with periodAgAt. Thus, if ¢/m is rational, the

solution is periodic.

m =1, r’ = 2 and q?= -4 implies this case must have a

periodicity of % = 2. This can be confirmed by noting that

G(G(fz)) = £, The period of (22) depends only on m2, q2 and r°
and does not depend on the initial value fz. A sample

trajectory for this case is also illustrated in Figure 6.

Further examination of (22) suggests that when B < 0 (black and

gray regions of the qz/r2 diagram of Figure 5), the line a = O
or q2 = —r20f+1) corresponds to periodic solutions of
periodicity 2. We note that as B » 0 from the negative side,

there will be increasingly closely packed 1lines of periodic

solutions with increasingly long periods.

An example is shown in Figure 7, which plots f: as a function of n

for 100 iterations commencing with fs = 1. Here m’= 1, r’ = 2

223



6+ L]

I L 1 I | | ! L
0O 10 20 30 40 50 60 70 80 90
n

Fig. 7 Graph of f: as a function of n for 100 iterations commencing with f: =1. Herem* =1, # = 2 and
q% = 0.0079 has been chosen to make ¢= 1/50 o '
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Fig. 8 Graph of f: form? = 1, ¥ = 2 and ¢? ~ -0.1244 has been chosen to make ¢= 4w = 0.25
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and q2 ~# —=0.0079 has been chosen to make ¢ = n/50. From (22),

we would expect a periodic solution of period 50 . In this case,
the solution hovers near the fixed point for g = 0 (i.e. ff = 0)
and then dramatically shifts away and returns. It should be
noted, that even though solutions of the form (21) are periodic,

they may contain singularities for certain choices of fs.

When ¢/m is irrational, then the trajectories are quasi-
periodic (and may become singular for certain choices of fs).
An example is plotted in Figure 8. 1In this case m® = 1, r =2
and q2 ~ —0.1244 has been chosen to make ¢ = n/4m = 0.25. It
can be seen that the oscillation is almost periodic with a

"period" of approximately 12At.

Negative values of rz(p) or qz(p) for some p, will have an effect
on the real space Kalman filter system (4-5). It was verified
experimentally that the type of oscillations discussed in this

section occurred in equations (4-5) as well.

3. Data assimilation on the equatorial beta plane.

In operational global atmospheric data assimilation systems,
analyses are routinely produced for the extratropics of both
hemispheres as well as the tropics. However, almost all data
assimilation theory has been developed for the extratropics. At
this time, there have been no tropical atmospheric applications of

the Kalman filter theory.
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In this section we describe the épplication of Kalman filter
theory to the shallow water equations én an equatorial beta plane.
The theory is two dimensional, but we consider special observatioh
networks which permit the diagonalization of theISYStem; In this
way, the complete time and space behaviour ofAthe-sécond moment
error statistics can be determined following the idéas of Daley
and Ménard(1993). We first derive the low frequency second moment
statistics‘fbr the equatorial‘beta plane and then‘ShOW' resulté

for the optimal and sub-optimal filters. See also Daley (1993).
Derivation of the model error for the equatorial beta plane

The theorj is based on the normal modés'of the linearized shallow
water equations on an equatorial béfa plane. The longitude and
latitude are denotéd A and ¢ respectively and earth’s radius a.
We define an east/west coordinate x = aA and a north/south

coordinate y = a¢. Then,

au : dh

st - BV * 95 = 0y @
av dh _

3t +  Byu + g—5§— = 0, . (24)
sh  Bu 8V

- ot 2] : (25)

where u,v are the eastward and northward velocity components and h

is the height of the free surface (with mean removed) and t is

time. Here, g is the gravitational constant, B 2Q/a 1is the
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(constant) beta parameter and H is the mean height of the free

surface (or equivalent depth).

The equatorial beta plane equations (23-25) have solutions
corresponding to Kelvin waves, Rossby waves and gravity (Poincaré)
waves. Solutions that vanish as y - o are of the form

vi(x,y,w) exp (-iwt), where,
vi(x,y,0) = N (w) D (y/a) exp(ikx). (26)

Here k 1is the zonal (x) wavenumber and i = {-1. n is a

non-negative integer meridional (y) wavenumber and,

Dn(IE z) =277 H(z) exp(-2°/2) , (29)

is the parabolic cylinder function of order n. Hn(z) is a Hermite
polynomial of order n (see Daley, 1993). w is the frequency and

is given by the dispersion relation,

(w/c)® - ¥* - Bk/w = (2n+l)B/c . ©(28)

arbitrary velocity and height fields v(x,y), u(x,y) and h(x,y) can
be expanded in terms of the structure functions‘vﬁ(x,y,wm) P
u:(x,y,wm) and h:(x,y,wm). We will assume that the expansion has
the same number of degrees of freedom ih the east/west and
north/south directions. Thus define K even, as the truncation

limit and write,

K/2 K 3
viey,t) = )Y ) ) e () vi(x,¥,.e) (29)
k=-K/2 n=0 m=1
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and similarly for u(x,y,t) and h(x,y,t). Here aV(t) is a complex
expansion coefficient which is common to the v, u and h expansions

and v(n,m,k) is a modal index.

our aim is to construct model error spatial covariance structures
for the equatorial beta plane. The spatial covariance structures
will be constructed using the ideas of Phillips. There are three

basic assumptions.

#*
< av(t)av,(t) > = 0 unless v

= v'. (30)
* .

< av(t)av(t) > = 0 unless W, = W (cut-off). - (31)
< av(t)av(t)*> is independent of t and v, for all modes

which satisfy (31). (32)
These assumptions then allow us to construct covariance,
correlation and variance functions for the domain (X%,Vy).
Then define v, = <ava§> and vv(x,y) = vi(x,y,wm) and similarly

for uV(x,y) and hv(x,y), with corresponding eigenfrequency W,
We will use as an illustration, the covariance between v and h.

The v/h covariance can be written,

Cop (X X1 ¥, ¥') = <V(X,V)B(X,¥)> = Y v, (x,¥) 7, h,(x,y"), (33)

v
for all w = w_. We can define variances qw(x,x,y,y) = <v2(x,y)>
and mex,x,y,y) = <h?(x,y)> and hence correlations,

e, (X,%',Y,¥') = <v(x,Y)R(x, ¥ )>/[<V (x,¥)><h" (¢, ) >177%, (34)
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In a similar manner we can construct ¢ , C , C , C , C ’
vv vu uv uu uh

C. r Cmﬁnd leand the corresponding variances and correlations.
We will now examine the tropical 1low frequency (slow mode)
covariances, variances and correlations obtained from (33). The
use of the present parabolic cylinder function expansion has the
advantage that the results can be presented in a way which is
valid for all equivalent depths. The disadvantage is that the
results are not very reliable far from the equator. In general,the
covariances are homogeneous in the x direction, but not in the y
direction. This is to be expected, because the coefficients in
(23-25) vary in y, but not in x. Thus, we show variances as a
function of y only. The variances are symmetric with respect to

the equator (y=0). <v®>, <u®> and g<h®>/H in units of m’s™ as a

function of y/ae are plotted in Figure 9. Two case are shown for
the height field - the solid curve includes all Kelvin modes which
have frequencies less than or equal to the cut-off frequency and
the dashed curve treats all Kelvin modes as fast modes. The
omission or inclusion of these Kelvin modes had a negligible

effect on the wind variance.

Correlations can be calculated from (34). Although these
correlations can be determined for any set of points, we will
display only correlations with equatorial points. In Figure 10

is shown C.. (panel a), cml(panel b) and C . (panel c).
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h and u have the same symmetry and we cannot rely on symmetry
arguments to suggest the form of the h/u and u/h correlations. In
Figure 11, we show two cases. In the first case, all modes with
frequencies less than the cut-off, including some Kelvin

modes are slow. For this case, cmland c, are plotted in Figure 11
(panels a and b) respectively. In the second case, no Kelvin modes
are counted as slow modes. cmland ¢, for this case are plotted in
panels (c and d) respectively. This second case corresponds to
the dashed line in Figure 9. Consider first panels (c and 4d).
These correlations are composed entirely of Rossby modes, in which
u and h are negatively correlated at the equator. This implies a
substantial negative correlation. For Kelvin modes, h and u are
positively correlated at the equator. Thus, the addition of the

slow Kelvin modes effectively reduces u/h and h/u correlations.

The correlation €, is plotted in Figure 12a. It is very large

scale and somewhat elongated along the x axis. 1In Figﬁre 12b is
plotted the corresponding covariance Cmﬁ The covariance

is essentially isotropic, so that the apparent non-isotropy of the
correlation is simply due to latitudinal variation of the height

< n%> depicted in Figure 9. We also examined the characteristic
scale of the h/h covariance as a function of latitude. We
defined a characteristic scale L in the following simple

way. Since the h/h covariances were essentially isotropic,

the characteristic scale was defined to be the distance at which

covariance decreased to 0.3 of its central value. In Figure 13

231



Ylae

X/ag X/ag

Fig. 12 (a) Graph of correlation c,, (b) and correlation G

4.0 T T

Li/2e

0.0 1 | 1

0.0 - 1.0 2.0 3.0
yla,

Fig. 13 Graph of L,/a, as a functions of y/a_

232



we plot Lh/ae as a function of y/ae. We consider three cases,
wc/(ch)U2 = 0.5, 1.0 and 2.0. When the normal frequency
cut-off wc/(ZBc)“?,= 1 is applied there is a substantial increase
in scale for the h/h covariance as the latitude decreases. This
equatorial increase in scale 1is enhanced/diminished with a
more/less stringent cut-off frequency fothhe slow modes. The
effect of varying the’cut—off frequency on the wind covariances is

much smaller.
Optimal Kalman filter on the equatorial beta plane

On an observation network where yj are the zeroes of the Hermite
polynomials and the the xj afe equally spaced, the Kalﬁan filter
can be diagonalized leading to equations (7-9) for each normal
mode. This is an enormous simplification of the second momement

equations and allows all the results of section 2 to be applied.

In Figure 14, we show the observation and model error variances
and the stationary. forecasf and analysis error variances as a
function of latitude for the wind (panel a) and height (panel b).
In Figure 15, we plot the wind (nﬁs*) and height.(mz)_forecast
error variances for the slow and fast modes as a function of time
(ordinate) and latitude (abscissa). Panel (a) shows the slow mode
wind, panel (b) the slow mode height, panel (c) the fast mode wind
and panel (d) the fast mode height. It can be seen that for the
slow modes, both wind (panel a) and height (panel b) error

variances reach stationarity very quickly. Note that section 2
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Fig. 14 Graph of the observation and model error variances and the stationary forecast and analysis error variances
as a function of latitude for the wind (panel a) and height (panel b)
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suggests for m?(v) = 1, qz(v) = 0, c+(v) << 1 and convergence

to stationarity is rapid. For the fast mode wind (panel c)

and height (panel d) forecast error variances, convergence to the
stationary solution (ff(v) = 0), is much slower. Again, this is
what would be expected when c+(v) = 1. The convergence rate for

both slow and fast modes is almost independent of latitude.
The sub-optimal filter

The optimal gain matrix (3) is replaced by,
K = PH[EHPH +R]T (35)
s s s
where P: is the (incorrectly) specified forecast error covariance.
Diagionalization of the equations leads to a general form of (8)

and the stationary solutions,
£2 = [(° (£ + )% + i’ / (£ 4 ) - ] . (36)
These equations are analyzed in Daley (1993).
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