WNANYJOWIW 1VDIINHDAL

l am
4

120

Standards for software
development and
maintenance

J.K. Gibson

Operations Department

August 1986

This paper has not been published and should be regarded as an Internal Report from ECMWF.
Permission to quote from it should be obtained from the ECMWEF.

European Centre for Medium-Range Weather Forecasts
Europaisches Zentrum fur mittelfristige Wettervorhersage
Centre européen pour les prévisions météorologiques a moyen

1. INTRODUCTION

Maintaining software is usually more expensive in terms of manpower resources

than creating software. In ECMWF's operaticnal environment

9 changes to improve the analysis, the forecast, or the guality

of disseminated products must be made with a minimum of delay:

® computer hardware systems have a shorter life than the software

applications they support;

8 applications analysts and programmers are limited in number and

there is a high staff turnover;

® many applications are of interest to Member States users, and to

potential users external to ECMWF.

The costs of software maintenance have been well documented (e.g. Martin and
McClure, 1983). Attention to programme methodology focused initially on
modularity, then graduated to structured programming (Dijkstra, 1976).
Conventions related to programming style have been used, often to good effect
{Roberts, 1974; Frank, 1971; Gibson, 1980 and 1982). Wevertheless, maintenance
demands, and will continue to require considerably more resources than the

seemingly more creative task of software development!

2. SOFTWARE DEVELOPMENT AND MAINTENANCE

2.1 Basic Concepts

The cost of software maintenance depends on a number of factors. These

include:
® the software quality - is it error free?
® the software design - does it do its job?
® the code complexity - can it be understood? ;
o the documentation - is there any? %
® the data interface -~ is it flexible?
e the need to modify - can all future requirements ever be foreseen?

® analyst availability - are they fixing other bugs?

Reduction of these costs requires careful planning, a methodological approach,

and a set of acceptable standards.

2.2 Aims of the Standards

It is essential that software for the second generation ECMWF Meteorolegical

Operational System (EMOS II) should be:

2 well planned and designed
8 well written

® gufficiently documented

8 maintainable

& transportable

8 efficient

® flexible.

The following development standard, coding standard and maintenance standard are
attempts to satisfy these aims. They are presented in the belief that, where
applied, they will contribute to the development and modification of systems
that will be maintainable, and that the methodology proposed will reduce the

costs of software maintenance.

3. A SOFTWARE DEVELOPMENT STANDARD

3.1 Specification and Design

A well thought-out programme is less difficult to code, produces fewer bugs,
and is often readily maintainable. Thus it is essential that sufficient
attention be given to specifying the tasks to be accomplished, and designing the
means by which they shall be achieved. For each significant programme Or
sub-system within EMOS II the specification and design should be presented as a

Technical Memorandum.

First, the objectives of the system should be considered. These should not be
confined to immediate objectives - desirable future enhancements should be

anticipated and planned wherever possible.

Next, the components of the system should be planned. These .should be designed
in a modular fashion, so that modules are interrelated in hierarchical,
tree-like structures. Modules should not be allowed to become too complex, as
this will increase the difficulty of maintenance, as well as making the module
difficult to test. Relationships between modules should be kept simple, further

facilitating testing, modification and maintenance.

High level languages should be used in preference to assembler languages, and
appropriate use should be made of standard, well tested libraries. Wherever
possible use of the high level language should be confined to the ANSI gsub~set.
Non-standard features, if necessary, should be confined to separate sets of

modules to improve portability.

Attention should be given to the dataflow through and within the system. Data
structures should be kept simple. Standard data forms should be used where
appropriate. Data input, output and data manipulation should be confined to a
set of data handling modules, separated from the applications modules. This will
reduce machine dependence and enhance transportability, since only the data
handling modules will need alteration to migrate to a different machine

environment.

The problem of the relationship between physical and logical data representation
should be considered. So too should the problem of data location. Where
possible, data formats should conform to machine independent, standard forms.
Files should be grouped into data bases. Intermediate software should retrieve
or add data, performing any required reformating or data conversion at the same
time. In this way the applications will not be closely coupled to the file
structure or the data storage format, enabling much greater flexibility at a

later date.

Consideration should be given at the design stage to

@ how the system should be tested
@ how the system could be modified

® how the system will be maintained.

If step by step testing of individual modules, related sets of modules, and
major sub=-components is planned in advance, check-out of the system will be both
comprehensive and readily achieved. Planning for future modification should
enable such modifications to be made with a minimum of disturbance to the system
as a whole. Planning for future maintenance may include reviewing which modules

would need modification to migrate the system to a different computer.

Past experience at ECMWF has shown that good design documentation is essential,
not least for future maintenance. Systems can best be maintained if the
maintenance analyst understands not just the code, but the design philosophy

that resulted in the code being written.

Where the specification and design document also includes plans for testing,

future modification and maintenance, its value is greatly enhanced.

3.2 Coding

Coding should begin only when the design document has been completed,

discussed, modified and approved. If the design has been sufficiently thorough,
the design document will provide a sufficient specification. If changes are
considered desirable then the proposed changes will require discussion, followed

by subsequent amendments to the design document.

The coding standaxrd contained in section 4 includes provision for 3 levels of
documentation within the source code = overview, external and internal. Overview
documentation indicates the purpose of each routine. This should follow directly
from the specification of the modules within the design document. Routines
should perform a single, logical sub-task. Calling sequences should be such that
routines are related in a tree-like, hierarchical manner. Applications routines
should call separate routines to perform input, output, data manipulation, or
any machine or operating system dependent function. The only input/output
handled directly by applications routines should be the writing of messages to

an output file.

External documentation consists of the description of each routine placed at its
head. It is recommended that the overview and external documentation be coded
for the complete system before coding the executable statements. This results in

the creation of a clear picture of the functions to be coded before attacking

the programming problem. The external documentation provides details of the
interface, the method, the externals to be called, the existence of further

documentation, the author, and the modification record.

Internal documentation serves two purposes - it relates the code to
supplementary documentation, and it indicates, sub-section by sub-section, the
purpose of the code. Source code which is interspersed with many comments is
difficult to follow, difficult to anderstand, and thus difficult to maintain. If
the documentation at ihe head of & routine is well written, then one line
headings at the top of each sub-section of 10 lines or so of code is

sufficient.

Coding should be such that the source code is easy to follow. Structured
techniques should be used, with indentation of IF clauses, and avoidance of
branching where possible. Where branches are necessary, forward branches should
be considered preferable to backward branches. Backward branches should be used
only when there is no reagonable alternative. Subroutine complexity should not
be excessive. Each routine should contain less than 300 executable statements.

Using the following measure of complexity:

@ each executable statement - score 1
® each subroutine call - score 5
e each branch - gcore 10

each routine should have a maximum score of 400.

3.3 Testing
As each routine is written, it should be reviewed. Code reviews should involve
at least two analysts. The following should be considered:

e does the source code satisfy the standards?
® can the source code satisfy a standard BANSI compiler?

® is the code easy to understand - can 90% of it be understood
after studying it for 10 minutes?

@ is the code too complex? (see 3.2 above)
& 1is the interface to the routine simple and sufficient?

® does the routine produce the required results?

@ can modifications be made if required?
& are error situations detected and correctly treated?

® 1is the routine efficient?

Having tested individual routines, sub-sets of the system should be integrated
in a demonstrable and testable manner. Such sub-sets should in turn be reviewed.
Finally, the total system should be assembled and run in guasi-operational mode
(i.e. along side the current operational systems). Only when results of this
final integrated test have been assessed should the néew system be accepted for

operational use.

4, A CODING STANDARD

4.1 Introduction

The coding style used for EMOS has been generally good. The level of comments
has been about right, and sensible use has been made of structured techniques.
Nevertheless, the advantages to be gained from moving to a slightly more formal
standard would be, in the author's opinion, well worth the effort reguired.

The standard described below is based on the DOCTOR system (Gibson, 1980 and
1982), which in turn has maich of its origins in a CDC concept {(Frank, 1971), and
in the OLYMPUS system (Roberts, 1974). DOCTOR hag already been used as the
standard for two major systems - the analysis and the forecast. The description
which follows contains some further modifications which seem relevant to
operational practice; and, in particular, to the predominant use of Fortran 77

for new systems.

4,2 Aims of the Standard

The purpose of a coding standard is to produce a coding style which leads to
well presented source code: such code should be well structured, well documented
and thus easy to understand. In addition, DOCTOR aims to provide standards for
the recognition of the scope of variables, partitioning of the code within
routines, and a means of extracting documentation from the source code. To sum

up,; the basic aims are:

® to provide well presented code;
® to produce code which can be easily understood;

2 to enable the inclusion of extractable documentation;

e to facilitate recognition of variable types and their scope
(global, local, arguments, etc.);

® to set up points of reference in an orderly way:

¢ to establish conventions concerning modularily, structure,
linkage, and style with future maintainability in mind.

4.3 Coding Conventions

Code should follow a modular structure, each module fulfilling a stated
purpose. Modules should not become too complex - a maximum complexity score of
200 based on the criteria given in 3.2 above is recommended. Modules should have
a hierarchical structure within a programme, and only call other modules at a

lower level.

Fach module should contain cne entry point, and at most two exits (a normal
return, and an abnormal end). The entry point should be at the head of the
routine, and the exit seguence at the base (see figure 4.1). RETURN should not
be coded elsewhere in the body of the routine. Exit from a module should be via
the normal return {(with a return code if necessary) or by means of a deliberate

abort.

ENTRY POINT }..at head of routine
(routine body)

IF (HARD ERROR) THEN
abort programme

)
)
ELSE) return sequence at base of
RETURN) routine
ENDIF)
END)

Figure 4.1 Entry and Return conventions

Error handling should follow the following conventions:

@ on error detection, a sensible message which includes the error

location should be written to the output file;

® hard or soft response to error detection should be signalled by a
return code argument. This argument should be passed as zero to

indicate hard response, positive to indicate soft response;

@ a separate return code should be allocated for each detectable error

condition;

2 the return code should be returned as zero if no error is detected,
or set to indicate the error(s) encountered if soft response is

requested;

® if hard response is requested, the programme should be abnormally

terminated on error detection, after writing the error report;
& STOP should never be used.

Separate modules should be coded to perform all input/output other than the
output of messages to the output file. This makes it possible completely to
change file formats and input/output methods without changing the main body of

the code. The operational data bases should be used wherever possible.

All machine dependent or operating system dependent features should be avoided
unless it is essential that they be used. Wherever such features are used, they
should be isclated within separate modules kept in libraries apart from the main
body of the code. This isolates the dependent features to collectiong of modules
which need to be changed if the programme is to migrate to another environment.

The main body of the code is then portable.

Names, subscripts, etc., should be as meaningful as possible, and should follow

the conventions contained in 4.5 below.

GO TO should be avoided where possiblé, If branches are necessary, they should

be confined to forward branches.

IF blocks should be indented. Nesting of IF blocks should never be more than 3

deep - deeper nesting destroys the understandability of the code.

DO loop boundaries should stand out. This can be achieved by commenting a blank
line before and after the DO statement and the terminator statement.
Alternatively, indentation may be used. Each Do loop should have a separate

terminator.

Tabels should never be associated with executable statements (e.g. in FORTRAN
the non-executable CONTINUE should always be used). This enables labels to be
moved without disturbing executable code. FORTRAN label numbers should be

assigned in accordance with 4.4 below.

4.4. Coding Style

Each module should begin with a set of principle comments. These should
contain:

e a title

@ +the PURPOSE of the routine

® the INTERFACE details, details of input/output parameters,
arguments, etc.

2 the EXTERNALS or other routines called
® a REFERENCE to further documentation

® +the AUTHOR and date the routine was written, together with
MODIFICATION details.

The code bedy of the module should be split into sections and sub~sections.
Sections should be numbered (1 to n), as should be sub-sections within sections
{11, 1.2 4. 1.m, 2.1, etc.), Thus, the Mth sub~section of the Nth

section is numbered N.M. Each section should be separated from the previous
section by a comment card containing minus signs or underlines in columns 7 to

72.

Each section should begin with:

® a section number and title (underlined)

® a CONTINUE statement numbered N0O (for the Nthsection),

€oJ.

c* 1. SET INITIAL VALUES.

100 CONTINUE

Each sub-section should begin with

® a sub-section number and title

® a CONTINUE statement numbered NMO (Section N, sub=-section M).

Numeric labels (e.g. FORTRAN statement numbers) should be related tc the section
and sub-section numbers. Thus section 3 begins with label 300; sub-section 12.1
begins with label 1210. This scheme allows a maximum of 10 labels per
sub-section. Code rquiring more than 10 labels per sub=-section should be

re-structured into sub-sections requiring less than 10 labels.

All branches in the code. including use of END=..., ERR=... in input/output
statements, must be commented. The comments should refer to the section and
sub-section branched to, not to the label (since label numbers or names do NOT

appear in extracted documentation).

FORMAT statements should normally be grouped together, near the base of the
subroutine. They should be labelled with numeric labels in the range 9000 to
9999, FORMAT descriptors may be used as an alternative to FORMAT statements if
this aids readability of the source code.

The example subroutine in Fig. 4.2 illustrates the coding style.

4.5 Naming Convections

The purpose of the following naming conventions is to convey, through prefix
letters, the type, scope, and nature of all variables within the programme. For
the purpose of this standard minor changes have been made to the previous
definition of the DOCTOR system (Gibson, 1982). These reflect
8 the increased use of the facilities of FORTRAN 77, especially
CHARACTER type
® rationalisation in the light of experience

® the desirability to restrict convention prefixes to a single
letter where possible.

The type of a variable is indicated by the first letter of the variable's name

according to Fig. 4.3.

10

OO0 00

*
*

OOO0O00 @) OO0O00O00000O0O0O000000O000O0000O000000

OO0

ER N 3

SUBROUTINE EXAMPLE(FA ,KLEN,KDV)
»EXAMPLE* — ROUTINE TO DEMONSTRATE THE =DOCTOR= STYLE.
PURPOSE.

THE MAIN PURPOSE OF THIS ROUTINE 1S TO DEMONSTRATE THE

CONVENTIONS, STYLE, AND PRESENTATION OF SOURCE CODE USING A
CODING STANDARD BASED ON THE =DOCTORs SYSTEM.

ADDITIONALLY, THIS ROUTINE PRINTS THE MAXIMUM AND MINIMUM

VALUES OF AN ARRAY.

INTERFACE.

xCALL* *=EXAMPLE(PA,KLEN,KDV)=

«PAx . — ARRAY TO BE EXAMINED (INPUT)
*KLEN= — " LENGTH OF =PA.= :
KDV — LOGICAL UNIT FOR OUTPUT MESSAGES.

METHOD.

*PAx IS SCANNED, AND THE MINIMUM AND MAXIMUM VALUES
EXTRACTED. THESE ARE THEN WRITTEN TO FILE «KDV.=

EXTERNALS.

NONE .

REFERENCE .

- NONE.

AUTHOR.

J. K. GIBSON » ECMWF = 14/05/86.

MODIFICATIONS.

NONE .
IMPLICIT LOGICAL(L,0,G), CHARACTER#B(C,H,Y)

DIMENSION PA(*)

1. SET INITIAL VALUES.

180 CONTINUE

IMAX=—10.E29
ZMIN= 10.E20

Fig. 4.2: Sample routine illustrating coding style

11

200

212

300

#*

OO0 OO(;)OOO (@]

310

[P ST T G 1

C
Cx
C
320

OO0

2. EXTRACT MAXIMUM AND MINIMUM.

CONTINUE

DO 212 J=1,KLEN
IF (PA(J).LT.ZMIN) THEN
ZMIN=PA(J)
IMIN=J
ENDIF

IF (PA(J).GT.ZMAX) THEN
ZMAX=PA (J)
IMAX=J

ENDIF

CONTINUE

Fig. 4.2 cont.

3. PRINT RESULTS.

CONTINUE

3.1 PRINT HEADING.

CONTINUE
WRITE(KDV, *(A)’)

'~ MAXIMUM AND MINIMUM VALUES OF AN ARRAY.®,

'— MAXIMUM LOCATION MINIMUM LOCATION’,

3.2 PRINT MAXIMUM, MINIMUM, AND THEIR LOCATIONS.

CONTINUE

WRITE(KDV,’ (1H®,F8.4,17,4X,F8.4,17)")
‘1.

ZMAX, IMAX, ZMIN, IMIN

END

12

PREFIX TYPE

I, J, X, M, N INTEGER
L, 0, G LOGICAL
c, H, ¥ CHARACTER
ALIL OTHER REAL

Fig. 4.3: Variable types

The default type convention may be established in FORTRAN by the statement:

IMPLICIT LOGICAL (L,0,G), CHARACTER*8(C,H,Y).

All variables not typed according to this default convention must be declared

explicitly (e.g. in REAL, INTEGER, etc. declarations).

In addition, a prefix convention is used to indicate the STATUS or SCOPE of the

variable. This enables differentiation at a glance between

® COMMON or GLOBAL variables

& LOCAL variables

® dummy arguments to subroutines
® loop control variables

® PARAMETER wvariables.

Fig. 4.4 defines the prefix conventions for this purpose.

TYPE
STATUS INTEGER REAL LOGICAL CHARACTER
OR SCOPE
GLOBAL AtoF L o
OR M, N Q to X (BUT NOT LP)
COMMON
DUMMY K P , 0 H
ARGUMENTS (BUT NOT PP)
LOCAL 1 7 G Y
VARIABLES (BUT NOT YP)
LOOP J - - -
CONTROL (BUT NOT JP)
PARAMETER JP PP LP YP

Fig. 4.4: Prefixes indicating variables by status

13

4.6 Conventions for Comments

A1l comments within the code should take the form of tities, clauses, or
sentences terminated by full stops or periods. Attention should be given to
source code readability, and to the desirability of extracting documentation
from the source code. Following the description given at the head of each
routine, documentation in the routine body should not be over-elaborate. Too
many comments within the code body make the logic of the coded statements
difficult to follow. Short, to the point titles to sections and sub-sections,
coupled with details of branches should read as a statement by statement
algorithm outlining the major logical steps. Little more by way of comments

should be necessary.

Where upper and lower case characters are supported within the source code
maintenance facilities these should be used to enable good quality documentation

to be extracted.

Where upper case only is supported, an extraction programme capable of
conversion to mixed upper/lower case will be provided, requiring the following
conventions. Abbreviations terminated by full stops (e.g. etc.) should be
either avoided or coded without the full stop (eg etc). Proper names appearing
in the middle of a clause or sentence should be prefixed by an asterisk (¥*),
indicating an upper case first letter to the document extraction programme.
Alternatively,nproper names may be parenthesised by asterisks (eg *FORTRAN*) to
indicate that the whole word is to be extracted as upper case letters. Header
titles and section titles should be "underlined" by coding = under each
character in the next consecutive statement (including punctuation characters).
Underlined titles will be recognised by the document extraction programme and
printed in upper case. A single letter followed by a full stop will be assumed

to be an initial, and extracted as upper case.

With this convention, the following rules apply to an upper/lower case

documentation extraction programme:

® the first letter after each full stop is UPPER CASE;

® words that are underlined are UPPER CASE;

® words bracketed by asterisks are UPPER CASE;

® words prefixed by a single asterisk have first lettei UPPER CASE only;
® single letters followed by full stops are UPPER CASE;

® all other letters are LOWER CASE.

14

4.7 Source Code Documentation

* The production of documentation is a skill at least as important as the skill
required to design and generate good code. It enhances the value of the code,
aiding

® understandability

@ modifiability

® maintainability

® transportability

® recoding, if this should ever be required.

The documentation of a system is difficult to keep up to date. Source code
documentation is easier to maintain in this respect, as it should be changed
when the code itself is changed. There is thus obvious value in maintaining
source code documentation that can be extracted to form the basis of external

documentation. Hence the conventions for comments in 4.6 above.

Three levels of document extraction are supported:

& OVERVIEW
® EXTERNAL
® INTERNAL
In addition, source code statements of value to the documentation (e.g. critical

DATA statements, special assignment statements, etc.) may be extracted.

OVERVIEW documentation is triggered by C**** in columns 1 to 5 (C and * in
column one are interchangeable - either may be used). It is terminated by the
first non-comment, or by triggers for EXTERNAL or INTERNAL documentation. The
trigger must contain a title. It is suggested that OVERVIEW documentation

comprise the title and purpose of each routine.

EXTERNAL documentation is triggered by C** in columns 1 to 3; it also includes
OVERVIEW documentation. It is terminated by the first non-comment, or by a
trigger for INTERNAL documentation. The trigger must contain a title. Tt is

suggested that EXTERNAL documentation comprise, in addition to the OVERVIEW:

® the INTERFACE details
® +the EXTERNALS used

15

@ the METHOD used
® a REFERENCE to further documentation

& the AUTHOR and MODIFICATION details.

INTERNAL documentation is triggered by C* in columns 1 and 2; it also includes
OVERVIEW and EXTERNAL documentation. It is terminated by a non-ccmment. The
trigger must contain a title or comment. It is suggested that INTERNAL

documentation comprise, in addition to OVERVIEW and EXTERNAT:

@ details of COMMON block variables
® section titles
® sub-section titles

® details of branches (referring to section and sub=-section
branched to, not to label numbers)

® any appropriate additional comments.

The extra information produced when INTERNAL documentation is extracted should

represent, in statement form, the algorithm used.

Additionally, any statements enclosed by comments containing C*** in columns 1

to 4 will be listed with EXTERNAL or INTERNAL documentation.

Fig. 4.2 illustrates the conventions for source code documentation. Figs. 4.5 to

4.7 contain examples of the 3 levels of documentation after extraction.

86/€5/15
SUBROUTINE EXAMPLE(PA,KLEN,KDV)

EXAMPLE — routine to demonstrate the DOCTOR style.
PURPOSE .

The main purpose of this routine is to demonstrate the
conventions, style, and presentation of source code using a
coding standard based on the DOCTOR system.

Additionally, this routine prints the maximum and minimum
values of an array.

Fig. 4.5: Example of Overview Documentation

16

86/€5/15
SUBROUTINE EXAMPLE(PA,KLEN,KDV)

EXAMPLE - routine to demonstrate the DOCTOR style.
PURPOSE.
The main purpose of this routine is to demonstrate the
conventions, style, and presentation of source code using a

coding standard based on the DOCTOR system.

, Additionally, this routine prints the maximum and minimum
values of an array.

INTERFACE.

CALL EXAMPLE (PA,KLEN,KDV)

PA — arroy to be examined (input)
KLEN - length of PA.
KDV —~ logical unit for output messages.

METHOD.

PA is scanned, and the minimum and maximum values
extraocted. These are then written to file KDV.

EXTERNALS.

None.

REFERENCE.

None.

AUTHOR.

J. K. Gibson ECMWF 14/05/86.

MODIFICATIONS.

None.

Fig. 4.6: Example of External Documentation

17

86/05/15
SUBROUTINE EXAMPLE(PA,KLEN,KDV)

EXAMPLE — routine to demonstrate the DOCTOR style.
PURPOSE.. '
The main purpose of this routine is to demonstrate the
conventions, style, and presentation of source code using a

coding standard based on the DOCTOR system.

Additionally, this routine prints the maximum and minimum
values of an array.

INTERFACE.

CALL EXAMPLE(PA,KLEN.KDV)

PA — array to be examined (input)
KLEN — length of PA.
KDV — logical unit for output messages.

METHOD .

PA is scanned, and the minimum and maximum values
extracted. These are then written fo file KDV.

EXTERNALS.
None.
REFERENCE.
None .
AUTHOR.
J. K. Gibson ECMWF 14/05/86.
MODIFICATIONS.
None.
1. SET INITIAL VALUES.
2. EXTRACT MAXIMUM AND MINIMUM.
3. PRINT RESULTS.
3.1 Print heading.
3.2 Print maximum, minimum, ond their locations.

Fig. 4.7: Example of Internal Documentation

i8

5. A MAINTENANCE STANDARD

5.1 Avoiding the Maintenance Problem

The simplest and most effective way of avoiding the maintenance problem is to
live with the software, make no changes, and do no maintenance! As this is
clearly impracticable and undesirable the problem is really to minimise the
amount of maintenance, and to maximise the ease with which such maintenance as

should prove necessary can be achieved.

As has been indicated above, the main means of minimising maintenance effort is
to produce well designed, well documented and well written source code. If
future modifications are planned for, their implementation will be facilitated.
If software transportability is planned for, software migration will be
facilitated. If code is easy to understand, it will be easy to modify. Thus the
design standard and the coding standard are essential pre-requisites to the

maintenance standard.

Additionally, there is a need to produce maintenance documentation, to plan

changes, and to keep a software log.

5.2 Maintenance Documentation

The primary maintenance documentation is the source code. Only the source code
can be guaranteed to be "up to date”. All secondary documentation, though

useful, cannot be guaranteed to be as up to date as the source code.

It is thus of vital importance to update source code comments when updating the

source code.

The document extraction facility used to extract "internal" documentation should
provide the narrative section of a system reference manual. This should be
expanded as necessary, and should contain a section comprising a system
maintenance log. The maintenance log should contain a diary of modificationms,
enhancements and changes introduced, together with a record of problems

encountered, and subsequent remedial action.

19

Maintenance documentation, as described above, should provide useful guidance in

the planning of changes, and in the correction of errors. It should be kept as

up to date as possible.

5.3 Modifications and Enhancements

There are 3 levels of modification for the purpose of the application of this

standard:

©® minor changes
e replacement/addition of routines

® system re-write or addition.

Where minor changes are required to an existing system, these should be carried
out with a minimum of disturbance to the existing system. Documentation should
be amended where necessary, and the maintenance log updated. If a number of
changes are required to any routine not conforming to the coding standards in 4.

above, consideration should be given to replacing the entire routine.

Where it is necessary to replace or add one or moxre routines, the coding
standard in section 4. and this maintenance standard should.be followed.
Additionally, appropriate items such as planning, design, software review, and
testing procedures should follow the recommendations within the software
development standard in section 3. If a significantly large number of routines
within a system need to be replaced, congideration should be given to the

development of a replacement system.

Where it is necessary to rewrite or add a new system, the software development
standard (section 3), the coding standard (section 4) and this maintenance

étandard should be followed.

6. ACKNOWLEDGEMENTS

The author wishes to acknowledge, with gratitude, invaluable material
presented by James Martin and Carma McClure in "Software Maintenance: The
Problem and its Solutions" (Prentice-Hall, 1983). The many useful references in
this book provide a wealth of additional material. Acknowledgement is also due
to Professor K.V. Roberts, for had it not been for the OLYMPUS system I doubt
whether programming support for ECMWF's forecast models would have reached the

standards of today.

20

REFERENCES

Frank, R.H., 1971, DOCK -~ an INTERNAL/EXTERNAL documentation processor
(Copyright Control Data Corp.). (Extracted from the source code by
courtesy of Frank Stevens, CDC).

Gibson, J.K., 1280, Programming Systems, Documentation, OLYMPUS, DOCTOR. ECMWF
Technical Memorandum No. 20.

Roberts, I.V., 1974, The Olympus Programming System Computer Physics
Communication, 7, 237-240.

Gibson, J.K., 1982, The Doctor System - A DOCumenTary ORiented Programming
System, ECMWF Technical Memorandum No. 52.

Dijkstra, E., 1976, Structured Programming, Software Engineering Techniques,
Petrocelli/Charter.

Martin, J., and McClure, C., 1983, Software Maintenance: The Problem and its
Solutions (Prentice~Hall).

21

